Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source.

نویسندگان

  • O Gazzano
  • M P Almeida
  • A K Nowak
  • S L Portalupi
  • A Lemaître
  • I Sagnes
  • A G White
  • P Senellart
چکیده

We demonstrate the unambiguous entangling operation of a photonic quantum-logic gate driven by an ultrabright solid-state single-photon source. Indistinguishable single photons emitted by a single semiconductor quantum dot in a micropillar optical cavity are used as target and control qubits. For a source brightness of 0.56 photons per pulse, the measured truth table has an overlap with the ideal case of 68.4±0.5%, increasing to 73.0±1.6% for a source brightness of 0.17 photons per pulse. The gate is entangling: At a source brightness of 0.48, the Bell-state fidelity is above the entangling threshold of 50% and reaches 71.0±3.6% for a source brightness of 0.15.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cavity quantum electrodynamics with semiconductor quantum dots

Cavity quantum electrodynamics with semiconductor quantum dots Pascale Senellart CNRS, Laboratoire de Photonique et de Nanostructures, Marcoussis, France Many quantum devices can be implemented by controlling the spontaneous emission of a semiconductor quantum dots in a microcavity: bright sources of quantum light, delayed photon entangler, optical quantum gates... In this talk, I will present ...

متن کامل

Effects of frequency correlation in linear optical entangling gates operated with independent photons

Bose-Einstein coalescence of independent photons at the surface of a beam splitter is the physical process that allows linear optical quantum gates to be built. When distinct parametric down-conversion events are used as an independent photon source, distinguishability arises form the energy correlation of each photon with its twin. We derive upper bound for the entanglement which can be genera...

متن کامل

On-demand single-photon source using a nanoscale metal–insulator–semiconductor capacitor

We propose an on-demand single-photon source for quantum cryptography using a metal–insulator–semiconductor quantum dot capacitor structure. The main component in the semiconductor is a p-doped quantum well, and the cylindrical gate under consideration is only nanometres in diameter. As in conventional metal–insulator–semiconductor capacitors, our system can also be biased into the inversion re...

متن کامل

Macroscopic rotation of photon polarization induced by a single spin

Entangling a single spin to the polarization of a single incoming photon, generated by an external source, would open new paradigms in quantum optics such as delayed-photon entanglement, deterministic logic gates or fault-tolerant quantum computing. These perspectives rely on the possibility that a single spin induces a macroscopic rotation of a photon polarization. Such polarization rotations ...

متن کامل

Quantum Process Tomography of a Universal Entangling Gate Implemented with Josephson Phase Qubits

Quantum logic gates must perform properly when operating on their standard input basis states, as well as when operating on complex superpositions of these states. Experiments using superconducting qubits have validated the truth table for particular implementations of e.g. the controlled-NOT gate 1,2 , but have not fully characterized gate operation for arbitrary superpositions of input states...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 110 25  شماره 

صفحات  -

تاریخ انتشار 2013